Conductor formula of Bloch by Kazuya Kato and Takeshi

نویسندگان

  • Kazuya Kato
  • Takeshi Saito
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Conductor Formula of Bloch

In [6], S. Bloch conjectures a formula for the Artin conductor of the l-adic etale cohomology of a regular model of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch, enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In this paper, we prove the formula in arbitrary d...

متن کامل

Conductor formula of Bloch

Conductor is a numerical invariant of a variety over a local field measuring the wild ramification of the inertia action on the l-adic etale cohomology. In [3], S.Bloch proposes a conjectural formula, Conjecture 1.9, which we call the conductor formula of Bloch. To formulate it, he defines another numerical invariant as the degree of the self-intersection class, which is defined using the local...

متن کامل

Parity in Bloch ’ s conductor formula in even dimension par Takeshi

For a variety over a local field, Bloch proposed a conjectural formula for the alternating sum of Artin conductor of `adic cohomology. We prove that the formula is valid modulo 2 if the variety has even dimension.

متن کامل

Bloch and Kato ’ s Exponential Map : Three Explicit Formulas

The purpose of this article is to give formulas for BlochKato’s exponential map and its dual for an absolutely crystalline padic representation V , in terms of the (φ,Γ)-module associated to V . As a corollary of these computations, we can give a very simple and slightly improved description of Perrin-Riou’s exponential map, which interpolates Bloch-Kato’s exponentials for the twists of V . Thi...

متن کامل

Tamagawa Number Conjecture for zeta Values

Spencer Bloch and the author formulated a general conjecture (Tamagawa number conjecture) on the relation between values of zeta functions of motives and arithmetic groups associated to motives. We discuss this conjecture, and describe some application of the philosophy of the conjecture to the study of elliptic curves. 2000 Mathematics Subject Classification: 11G40.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001